Let ${\left( {x + 10} \right)^{50}} + {\left( {x - 10} \right)^{50}} = {a_0} + {a_1}x + {a_2}{x^2} + .... + {a_{50}}{x^{50}}$ , for $x \in R$; then $\frac{{{a_2}}}{{{a_0}}}$ is equal to
$12.50$
$12$
$12.25$
$12.75$
If the middle term in the expansion of ${\left( {{x^2} + \frac{1}{x}} \right)^n}$ is $924{x^6}$, then $n = $
Write the general term in the expansion of $\left(x^{2}-y\right)^{6}$
The ratio of the coefficient of terms ${x^{n - r}}{a^r}$and ${x^r}{a^{n - r}}$ in the binomial expansion of ${(x + a)^n}$ will be
If $p$ and $q$ be positive, then the coefficients of ${x^p}$ and ${x^q}$ in the expansion of ${(1 + x)^{p + q}}$will be
Find the coefficient of $x^{5}$ in the product $(1+2 x)^{6}(1-x)^{7}$ using binomial theorem.